New AI showing how AI increases scientific productivity. This should be must reading for all of the NNSA employees.
Moderator's note:
Papers on arxiv are not peer-reviewed.
https://arxiv.org/abs/2412.17866
Artificial Intelligence, Scientific Discovery, and Product Innovation
Aidan Toner-Rodgers
This paper studies the impact of artificial intelligence on innovation, exploiting the randomized introduction of a new materials discovery technology to 1,018 scientists in the R&D lab of a large U.S. firm. AI-assisted researchers discover 44% more materials, resulting in a 39% increase in patent filings and a 17% rise in downstream product innovation. These compounds possess more novel chemical structures and lead to more radical inventions. However, the technology has strikingly disparate effects across the productivity distribution: while the bottom third of scientists see little benefit, the output of top researchers nearly doubles. Investigating the mechanisms behind these results, I show that AI automates 57% of "idea-generation" tasks, reallocating researchers to the new task of evaluating model-produced candidate materials. Top scientists leverage their domain knowledge to prioritize promising AI suggestions, while others waste significant resources testing false positives. Together, these findings demonstrate the potential of AI-augmented research and highlight the complementarity between algorithms and expertise in the innovative process. Survey evidence reveals that these gains come at a cost, however, as 82% of scientists report reduced satisfaction with their work due to decreased creativity and skill underutilizati
.
3 comments:
This paper was disavowed by MIT on 5/16/25. https://techcrunch.com/2025/05/17/mit-disavows-doctoral-students-paper-on-ai-productivity-benefits/
This paper was disavowed by MIT on 5/16/25. https://techcrunch.com/2025/05/17/mit-disavows-doctoral-students-paper-on-ai-productivity-benefits/
What? If you read the paper it sounds like it makes sense and rings true with what everyone is saying about AI. Is it just some minor error they can correct?
This article discusses it, evidently it may have been completely made up:
https://www.science.org/content/blog-post/whoa-now-cautionary-tales-materials-science
Post a Comment